Protein Information

ID 40
Name sodium channel (protein family or complex)
Synonyms Sodium channel

Compound Information

ID 1331
Name pyrethrins
CAS pyrethrins

Reference

PubMed Abstract RScore(About this table)
11416227 Li WI, Berman FW, Okino T, Yokokawa F, Shioiri T, Gerwick WH, Murray TF: Antillatoxin is a marine cyanobacterial toxin that potently activates voltage-gated sodium channels. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7599-604.
Antillatoxin (ATX) is a lipopeptide derived from the pantropical marine cyanobacterium Lyngbya majuscula. ATX is neurotoxic in primary cultures of rat cerebellar granule cells, and this neuronal death is prevented by either N-methyl-d-aspartate (NMDA) receptor antagonists or tetrodotoxin. To further explore the potential interaction of ATX with voltage-gated sodium channels, we assessed the influence of tetrodotoxin on ATX-induced Ca2+ influx in cerebellar granule cells. The rapid increase in intracellular Ca2+ produced by ATX (100 nM) was antagonized in a concentration-dependent manner by tetrodotoxin. Additional, more direct, evidence for an interaction with voltage-gated sodium channels was derived from the ATX-induced allosteric enhancement of [3H] batrachotoxin binding to neurotoxin site 2 of the alpha subunit of the sodium channel. ATX, moreover, produced a strong synergistic stimulation of [3H] batrachotoxin binding in combination with brevetoxin, which is a ligand for neurotoxin site 5 on the voltage-gated sodium channel. Positive allosteric interactions were not observed between ATX and either alpha-scorpion toxin or the pyrethroid deltamethrin. That ATX interaction with voltage-gated sodium channels produces a gain of function was demonstrated by the concentration-dependent and tetrodotoxin-sensitive stimulation of 22Na+ influx in cerebellar granule cells exposed to ATX. Together these results demonstrate that the lipopeptide ATX is an activator of voltage-gated sodium channels. The neurotoxic actions of ATX therefore resemble those of brevetoxins that produce neural insult through depolarization-evoked Na+ load, glutamate release, relief of Mg2+ block of NMDA receptors, and Ca2+ influx.
2(0,0,0,2)