Protein Information

ID 497
Name NA K ATPase
Synonyms (NA+ + K+)ATPase; ATP1A1; ATPase; ATPase Na+/K+ transporting alpha 1 polypeptide; Na (+) K (+) ATPase; Na (+),K (+) ATPase; Na + K + ATPase; Na K + ATPase…

Compound Information

ID 336
Name strychnine
CAS strychnidin-10-one

Reference

PubMed Abstract RScore(About this table)
12888426 Kurup RK, Kurup PA: Hypothalamic digoxin, hemispheric chemical dominance, and eating behavior. Int J Neurosci. 2003 Aug;113(8):1127-41.
The isoprenoid pathway produces an endogenous membrane Na+-K+ ATPase inhibitor, digoxin, which can regulate neurotransmitter and amino acid transport. Digoxin synthesis and neurotransmitter patterns were assessed in eating disorders. The patterns were compared in those with right hemispheric and left hemispheric dominance. The serum HMG CoA reductase activity, RBC membrane Na+-K+ ATPase activity, serum digoxin, magnesium, tryptophan catabolites (serotonin, quinolinic acid, strychnine, and nicotine), and tyrosine catabolites (morphine, dopamine, and noradrenaline) were measured in anorexia nervosa, bulimia nervosa, right hemispheric dominant, left hemispheric dominant, and bihemispheric dominant individuals. Digoxin synthesis was increased with upregulated tryptophan catabolism and downregulated tyrosine catabolism in those with anorexia nervosa and right hemispheric chemical dominance. Digoxin synthesis was reduced with downregulated tryptophan catabolism and upregulated tyrosine catabolism in those with bulimia nervosa and left hemispheric chemical dominance. The membrane Na+-K+ ATPase activity and serum magnesium were decreased in anorexia nervosa and right hemispheric chemical dominance while they were increased in bulimia nervosa and left hemispheric chemical dominance. Hypothalamic digoxin and hemispheric chemical dominance play a central role in the regulation of eating behavior. Anorexia nervosa represents the right hemispheric chemically dominant/hyperdigoxinemic state and bulimia nervosa the left hemispheric chemically dominant/hypodigoxinemic state.
83(1,1,1,3)