Protein Information

ID 88
Name Acetylcholinesterase
Synonyms ACHE; ACHE protein; AChE; ARACHE; AcChoEase; Acetylcholine acetylhydrolase; Acetylcholinesterase; Acetylcholinesterase isoform E4 E6 variant…

Compound Information

ID 336
Name strychnine
CAS strychnidin-10-one

Reference

PubMed Abstract RScore(About this table)
9600872 Burgin AM, Szczupak L: Basal acetylcholine release in leech ganglia depolarizes neurons through receptors with a nicotinic binding site. J Exp Biol. 1998 May 21;201 (Pt 12):1907-15.
The response of Retzius neurons, the main neuronal source of serotonin in the leech nervous system, to cholinergic agonists has been extensively investigated. In this study, we analyzed the effects of inhibiting the acetylcholinesterase (AChE) activity in the leech midbody ganglion on the electrophysiological activity of the Retzius neurons. Bath application of neostigmine and physostigmine (0.1-100 &mgr;mol l-1) produced, after a delay, a strong depolarization of the Retzius neurons with a dose-dependent amplitude and latency. The amplitude of this depolarization increased as the extracellular level of Ca2+ increased and decreased as the extracellular level of Ca2+ decreased. The response to neostigmine and physostigmine was inhibited by curare (100 &mgr;mol l-1), nicotine (10 &mgr;mol l-1), atropine (100 &mgr;mol l-1) and strychnine (100 &mgr;mol l-1), but was not affected by mecamylamine (100 &mgr;mol l-1) or hexamethonium (100 &mgr;mol l-1). Superfusion with solutions containing 100 &mgr;mol l-1 strychnine or atropine produced a progressive hyperpolarization of the Retzius neurons, while superfusion with 100 &mgr;mol l-1 curare did not. The hyperpolarization induced by atropine was inhibited in the presence of curare. Other neurons in the ganglion showed distinctive responses to the AChE inhibitors that were coincident with their responses to cholinergic agonists. The results suggest the existence of a basal level of acetylcholine (ACh) release in the leech ganglion that is powerfully counteracted by endogenous AChE activity. Under control conditions, this basal release appears to be sufficient to generate an ACh tonus that regulates the membrane potential of Retzius neurons. Since these neurons can support a sustained firing rate, which is dependent on the membrane potential, the results presented in this report suggest that the basal ACh tonus regulates the output of these neuromodulatory serotonergic neurons.
3(0,0,0,3)