Protein Information

ID 291
Name glycine receptors (protein family or complex)
Synonyms Glycine receptor; Glycine receptors

Compound Information

ID 336
Name strychnine
CAS strychnidin-10-one

Reference

PubMed Abstract RScore(About this table)
12123749 Maksay G, Biro T, Laube B: Hyperekplexia mutation of glycine receptors: decreased gating efficacy with altered binding thermodynamics. Eur J Neurosci. 2002 Apr;15(8):1299-305.
[(3) H] Strychnine binding was studied to recombinant human alpha (1) and the hyperekplexia mutant alpha (1) R271L glycine receptors (GlyRs) transiently expressed in human embryonic kidney (HEK)-293 cell cultures at 0, 18 and 37 degrees. The alpha (1) R271L mutation did not affect the linear van't Hoff plots of the exothermic binding of the antagonist [3H] strychnine while it turned taurine into an antagonist with exothermic binding. The inhibition constants of the agonist glycine showed opposite temperature dependence on alpha (1) GlyRs, corresponding to endothermic binding driven by large entropic increases. The temperature dependence of displacement by the partial agonists taurine on alpha (1) GlyRs and glycine on alpha (1) R271L GlyRs was biphasic reflecting negative heat capacity changes, dehydration changes and/or a complex binding mechanism. The thermodynamic discrimination of efficacy is valid for native rat spinal and recombinant human GlyRs. The alpha (1) R271L mutation impairs the transduction mechanism and distorts gating of GlyRs. Thereby it reduces the potency and efficacy of agonists and affects their thermodynamic parameters of binding. The hyperekplexia mutation offers a model system to demonstrate the correlation among pathophysiology, gating efficacy and binding thermodynamics of GlyRs.
82(1,1,1,2)