Protein Information

ID 291
Name glycine receptors (protein family or complex)
Synonyms Glycine receptor; Glycine receptors

Compound Information

ID 336
Name strychnine
CAS strychnidin-10-one

Reference

PubMed Abstract RScore(About this table)
10683407 Darstein M, Landwehrmeyer GB, Kling C, Becker CM, Feuerstein TJ: Strychnine-sensitive glycine receptors in rat caudatoputamen are expressed by cholinergic interneurons. J Physiol. 2002 Oct 1;544(Pt 1):253-65.
Strychnine-sensitive glycine receptors are ligand-gated anion channels widely expressed in spinal cord and brainstem. Recent functional studies demonstrating glycine-induced release of [(3) H] acetylcholine in rat caudatoputamen suggested the existence of excitatory glycine receptors in that region. Since the expression of glycine receptors in the caudatoputamen had not been reported earlier, we studied the glycine receptor-like immunoreactivity in this structure using a monoclonal antibody (mAb4a) recognizing an epitope common to all of the ligand-binding alpha-subunit variants of the glycine receptor. [Becker et al. (1993) Brain Res. 11, 327-333; Nicola et al. (1992) Neurosci. Lett. 138, 173-178]. Immunohistochemistry with mAb4a disclosed a specific staining of sparsely distributed large neurons in rat caudatoputamen, displaying an immunoreactive signal of lower intensity than that observed in motoneurons in spinal cord. Fluorescent dual labelling demonstrated that glycine receptor-like immunoreactivity co-localizes with choline acetyltransferase-like immunoreactivity in rat caudatoputamen. All neurons with glycine receptor-like immunoreactivity in the caudatoputamen studied were immunoreactive with choline acetyltransferase, and represented a subpopulation of cholinergic neurons (approximately 90% of the somata with choline acetyltransferase-like immunoreactivity). These results suggest that strychnine-sensitive glycine receptors are present on cholinergic interneurons in rat caudatoputamen, supporting the hypothesis that glycine receptors inducing striatal release of [(3) H] acetylcholine may be localized to cholinergic neurons.
46(0,1,3,6)