Protein Information

ID 291
Name glycine receptors (protein family or complex)
Synonyms Glycine receptor; Glycine receptors

Compound Information

ID 336
Name strychnine
CAS strychnidin-10-one

Reference

PubMed Abstract RScore(About this table)
19776366 Palazzo E, Guida F, Migliozzi A, Gatta L, Marabese I, Luongo L, Rossi C, de Novellis V, Fernandez-Sanchez E, Soukupova M, Zafra F, Maione S: Intraperiaqueductal gray glycine and D-serine exert dual effects on rostral ventromedial medulla ON- and OFF-cell activity and thermoceptive threshold in the rat. J Neurosci. 1997 Aug 15;17(16):6483-91.
We have studied the involvement of the N-methyl-D-aspartate receptor (NMDAR) glycine site and the strychnine-sensitive glycine receptor (GlyR) in the ventrolateral periaqueductal gray (VL-PAG) on nociceptive behavior (tail flick) and pain-related changes on neuronal activity in the rostral ventromedial medulla (RVM). Glycine or D-serine increased the tail-flick latency, reduced OFF-cell pause, and delayed its onset and increased the time between the onset of the OFF-cell pause and the tail withdrawal. Conversely, they decreased the ongoing activity of the ON cell, the tail-flick-induced ON-cell firing, whereas they delayed the onset of increased tail-flick-induced ON-cell firing. Also, glycine or D-serine reduced the interval between the onset of the increased ON-cell firing and tail withdrawal. Whereas 7-Cl-kynurenic acid (7-Cl-KYN) prevented such effects, strychnine did not do so. A higher dose of 7-Cl-KYN or strychnine was per se able to reduce or increase tail-flick latency and increase or reduce ON-cell activities, respectively. A higher dose of glycine was hyperalgesic in the presence of 7-Cl-KYN, whereas such an effect was prevented by strychnine. These data suggest 1) a dual role of glycine in producing hyperalgesia or analgesia by stimulating the GlyR or the NMDARs within the VL-PAG, respectively; 2) consistently that RVM ON and OFF cells display opposite firing patterns to the stimulation of the VL-PAG NMDAR glycine site and GlyR activation; and 3) a tonic role of these receptors within the VL-PAG-RVM antinociceptive descending pathway.
6(0,0,1,1)