Protein Information

ID 65
Name NMDA receptor (protein family or complex)
Synonyms Glutamate [NMDA] receptor; Glutamate [NMDA] receptors; N methyl D aspartate receptor; N methyl D aspartate receptors; NMDA receptor; NMDA receptors

Compound Information

ID 336
Name strychnine
CAS strychnidin-10-one

Reference

PubMed Abstract RScore(About this table)
7566501 Allen CN, Omelchenko I, Ross SM, Spencer P: The neurotoxin, beta-N-methylamino-L-alanine (BMAA) interacts with the strychnine-insensitive glycine modulatory site of the N-methyl-D-aspartate receptor. Neuropharmacology. 1995 Jun;34(6):651-8.
Electrophysiological and receptor binding techniques were used to determine whether the neurotoxin beta-N-methylamino-L-alanine (BMAA), a monocarboxylic amino acid, can act at the strychnine-insensitive glycine modulatory site to modify the activity of N-methyl-D-aspartate receptors. DL-BMAA but not L-BMAA reversibly potentiated the amplitude of NMDA-activated currents. Neither DL-BMAA nor L-BMAA were able independently to active currents. The reversal potential and the potential-dependence of the amplitude were not affected by DL-BMAA. The DL-BMAA effect was reversibly antagonized by 7-chlorokynurenic acid. Concentration jump experiments showed that the time course of the "off" response of NMDA-activated currents in the presence of DL-BMAA is faster than in the presence of glycine, suggesting that DL-BMAA dissociates from the receptor more rapidly than glycine. DL-BMAA produced a concentration-dependent displacement of [3H] glycine binding which was additive with that of 7-chlorokynurenic acid. These data indicate that D-BMAA could act as a stereospecific modulator of NMDA receptor function by acting as an agonist at the strychnine-insensitive glycine modulatory site of the NMDA receptor.
193(2,3,3,3)