18061070 |
Hink U, Daiber A, Kayhan N, Trischler J, Kraatz C, Oelze M, Mollnau H, Wenzel P, Vahl CF, Ho KK, Weiner H, Munzel T: Oxidative inhibition of the mitochondrial aldehyde dehydrogenase promotes nitroglycerin tolerance in human blood vessels. J Am Coll Cardiol. 2007 Dec 4;50(23):2226-32. Epub 2007 Nov 19. OBJECTIVES: We tested the hypothesis of whether an inhibition of the nitroglycerin (GTN) bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2) contributes to GTN tolerance in human blood vessels. BACKGROUND: The hemodynamic effects of GTN are rapidly blunted by the development of tolerance, a phenomenon associated with increased formation of reactive oxygen species (ROS). Recent studies suggest that ROS-induced inhibition of ALDH-2 accounts for tolerance in animal models. METHODS: Segments of surgically removed arteria mammaria and vena saphena from patients undergoing coronary bypass surgery were used to examine the vascular responsiveness to GTN and the endothelium-dependent vasodilator acetylcholine. The ALDH-2 activity and expression in these segments were assessed by the conversion of a benzaldehyde or its derivative to the benzoic acid metabolite and by Western blotting technique. RESULTS: In contrast to patients not treated with nitrates (n = 36), patients treated with GTN for 48 h (n = 14) before surgery showed tolerance to GTN and endothelial dysfunction in arterial and venous vessels. In vivo GTN tolerance was mimicked in vitro by incubation of nontolerant vessels with the ALDH-2 inhibitor benomyl. In vivo GTN treatment decreased vascular aldehyde dehydrogenase activity compared with nontolerant vessels and decreased the expression of ALDH-2 in arterial tissue. Incubation of control venous vessels with GTN caused a significant attenuation of aldehyde dehydrogenase activity that was reversed by presence of the sulfhydryl group donor dithiothreitol. CONCLUSIONS: Long-term GTN treatment induces tolerance and endothelial dysfunction in human vessels, associated with an inhibition and down-regulation of vascular ALDH-2. Thus, these findings extend results of previous animal studies to humans. |
4(0,0,0,4) |