Protein Information

ID 296
Name dopamine transporter
Synonyms DA transporter; DAT1; DAT; DAT 1; Dopamine transporter; SLC6A3; Sodium dependent dopamine transporter; Dopamine transporters…

Compound Information

ID 1819
Name piperazine
CAS piperazine

Reference

PubMed Abstract RScore(About this table)
15142566 Kimura M, Masuda T, Yamada K, Mitani M, Kubota N, Kawakatsu N, Kishii K, Inazu M, Kiuchi Y, Oguchi K, Namiki T: Efficient asymmetric syntheses, determination of absolute configurations and biological activities of 1-[4,4-bis (4-fluorophenyl) butyl]-4-[2-hydroxy-3-(phenylamino) propyl] pipera zine as a novel potent dopamine uptake inhibitor in the central nervous system. Bioorg Med Chem. 2004 Jun 1;12(11):3069-78.
An efficient asymmetric synthesis of the chiral N-(3-chloro-2-hydroxypropyl) anilines (2a and 2b) was achieved through the regioselective ring-opening reaction of chiral epichlorohydrin with aniline. This was applied to an asymmetric synthesis of the enantiomers of 1-[4,4-bis (4-fluorophenyl) butyl]-4-[2-hydroxy-3-(phenylamino) propyl] pipera zine 1 as a novel potent dopamine uptake inhibitor. Both enantiomers as trihydrochlorides, 4a.3HCl and 4b.3HCl, could be synthesized in good total yields and optical purities of 100% ee in three steps synthesis, respectively. The absolute configurations of 4a.3HCl and 4b.3HCl were determined using the modified Mosher's method with the related compounds, the intermediates (2a and 2b) and the free bases (4a and 4b). The analytical results indicated that 4a.3HCl and 4b.3HCl have the (S)- and (R)-configuration, respectively, and a series of reactions to provide them proceeded without the apparent influence on the stereochemistry at the chiral centers. In in vitro pharmacological evaluations, 4a.3HCl and 4b.3HCl showed potent dopamine transporter binding affinities, high dopamine, moderate serotonin, and weak norepinephrine uptake inhibitory activities, and 4a.3HCl exhibited a more potent and selective dopamine uptake inhibition over the serotonin or norepinephrine uptake inhibition as compared with 4b.3HCl. An ex vivo evaluation revealed that the oral administrations of both enantiomers at a dose of 30 mg/kg in rats displayed apparent dopamine uptake inhibitory activities and 4a.3HCl had a stronger tendency to inhibit dopamine uptake compared with 4b.3HCl.
1(0,0,0,1)