Protein Information

ID 24
Name muscles
Synonyms COX 7a M; COX VIIa M; COX7A; COX7A1; COX7A1 protein; COX7AH; COX7AM; Cytochrome c oxidase subunit 7a H…

Compound Information

ID 360
Name streptomycin
CAS

Reference

PubMed Abstract RScore(About this table)
17005404 Whitehead NP, Streamer M, Lusambili LI, Sachs F, Allen DG: Streptomycin reduces stretch-induced membrane permeability in muscles from mdx mice. Neuromuscul Disord. 2006 Dec;16(12):845-54. Epub 2006 Sep 26.
It is well-known that muscles from mdx mice are more susceptible to membrane damage from eccentric contractions than wild-type muscles. The present study tested the hypothesis that the stretch-induced membrane permeability in dystrophic muscle is due to Ca (2+) entry through stretch-activated channels (SACs) and the subsequent activation of Ca (2+) -dependent degradative pathways. Eccentric contractions were carried out on muscles from mdx and wild-type mice, both on isolated muscles and on intact mice subjected to downhill running on a treadmill. In isolated muscles the SAC blockers, streptomycin and GsMTx4, improved force and significantly reduced the uptake of procion orange dye into fibres from mdx muscles, which increased progressively over 60 min after the eccentric contractions. In experiments on intact mdx mice, streptomycin also partially prevented the reduced force and the increased membrane permeability (Evans Blue Dye uptake). The results suggest that Ca (2+) entry through SACs activates Ca (2+) -dependent pathways, which are the main cause of the increased membrane permeability in mdx muscle.
164(2,2,2,4)