Protein Information

ID 24
Name muscles
Synonyms COX 7a M; COX VIIa M; COX7A; COX7A1; COX7A1 protein; COX7AH; COX7AM; Cytochrome c oxidase subunit 7a H…

Compound Information

ID 954
Name SMA
CAS sodium 2-chloroacetate

Reference

PubMed Abstract RScore(About this table)
20080191 Brendel B, Hertrich I, Erb M, Lindner A, Riecker A, Grodd W, Ackermann H: The contribution of mesiofrontal cortex to the preparation and execution of repetitive syllable productions: an fMRI study. Neuroimage. 2010 Apr 15;50(3):1219-30. Epub 2010 Jan 18.
Clinical data indicate that the brain network of speech motor control can be subdivided into at least three functional-neuroanatomical subsystems: (i) planning of movement sequences (premotor ventrolateral-frontal cortex and/or anterior insula), (ii) preparedness for/initiation of upcoming verbal utterances (supplementary motor area, SMA), and (iii) on-line innervation of vocal tract muscles, i.e., motor execution (corticobulbar system, basal ganglia, cerebellum). Using an event-related design, this functional magnetic resonance imaging (fMRI) study sought to further delineate the contribution of SMA to pre-articulatory processes of speech production (preceding the innervation of vocal tract muscles) during an acoustically paced syllable repetition task forewarned by a tone signal. Hemodynamic activation across the whole brain and the time courses of the responses in five regions of interest (ROIs) were computed. First, motor preparation was associated with a widespread bilateral activation pattern, encompassing brainstem structures, SMA, insula, premotor ventrolateral-frontal areas, primary sensorimotor cortex (SMC), basal ganglia, and the superior cerebellum. Second, calculation of the time courses of BOLD ("blood oxygenation level-dependent") signal changes revealed the warning stimulus to elicit synchronous onset of hemodynamic activation in these areas. However, during 4-s intervals of syllable repetitions SMA and cerebellum showed opposite temporal activation patterns in terms of a shorter (SMA) and longer (cerebellum) latency of the entire BOLD response-as compared to SMC, indicating different pacing mechanisms during the initial and the ongoing phase of the task. Nevertheless, the contribution of SMA was not exclusively restricted to the preparation/initiation of verbal responses since the extension of mesiofrontal activation varied with task duration.
2(0,0,0,2)