12065624 |
Donald AN, Wallace DJ, McKenzie S, Marley PD: Phospholipase C-mediated signalling is not required for histamine-induced catecholamine secretion from bovine chromaffin cells. J Neurochem. 2002 Jun;81(5):1116-29. A possible role for signalling through phospholipase C in histamine-induced catecholamine secretion from bovine adrenal chromaffin cells has been investigated. Secretion evoked by histamine over 10 min was not prevented by inhibiting inositol-1,4,5-trisphosphate receptors with 2-APB, by blocking ryanodine receptors with a combination of ryanodine and caffeine, or by depleting intracellular Ca (2+) stores by pretreatment with thapsigargin. Inhibition of protein kinase C with Ro31-8220 also failed to reduce secretion. Inhibition of phospholipase C with ET-18-OCH (3) reduced both histamine- and K (+) -induced inositol phosphate responses by 70-80% without reducing their secretory responses. Stimulating phospholipase C with Pasteurella multocida toxin did not evoke secretion or enhance the secretory response to histamine. The secretory response to histamine was little affected by tetrodotoxin or by substituting extracellular Na (+) with N -methyl-d-glucamine (+) or choline (+), or by substituting external Cl (-) with nitrate (-). Blocking various K (+) channels with apamin, charybdotoxin, Ba (2+), tetraethylammonium, 4-aminopyridine, tertiapin or glibenclamide failed to reduce the ability of histamine to evoke secretion. These results indicate that histamine evokes secretion by a mechanism that does not require inositol-1,4,5-trisphosphate-mediated mobilization of stored Ca (2+), diacylglycerol-mediated activation of protein kinase C, or activation of phospholipase C. The results are consistent with histamine acting by depolarizing chromaffin cells through a phospholipase C-independent mechanism. |
3(0,0,0,3) |