Protein Information

ID 171
Name E cadherin
Synonyms Arc 1; CAM 120/80; CD324; CD324 antigen; CDH 1; CDH1; CDHE; Cadherin 1…

Compound Information

ID 1341
Name rotenone
CAS

Reference

PubMed Abstract RScore(About this table)
15677311 Rhyu DY, Yang Y, Ha H, Lee GT, Song JS, Uh ST, Lee HB: Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol. 2005 Mar;16(3):667-75. Epub 2005 Jan 26.
Epithelial-mesenchymal transition (EMT) plays an important role in renal tubulointerstitial fibrosis and TGF-beta1 is the key inducer of EMT. Phosphorylation of Smad proteins and/or mitogen-activated protein kinases (MAPK) is required for TGF-beta1-induced EMT. Because reactive oxygen species (ROS) are involved in TGF-beta1 signaling and are upstream signaling molecules to MAPK, this study examined the role of ROS in TGF-beta1-induced MAPK activation and EMT in rat proximal tubular epithelial cells. Growth-arrested and synchronized NRK-52E cells were stimulated with TGF-beta1 (0.2 to 20 ng/ml) or H (2) O (2) (1 to 500 microM) in the presence or absence of antioxidants (N-acetylcysteine or catalase), inhibitors of NADPH oxidase (diphenyleneiodonium and apocynin), mitochondrial electron transfer chain subunit I (rotenone), and MAPK (PD 98059, an MEK [MAP kinase/ERK kinase] inhibitor, or p38 MAPK inhibitor) for up to 96 h. TGF-beta1 increased dichlorofluorescein-sensitive cellular ROS, phosphorylated Smad 2, p38 MAPK, extracellular signal-regulated kinases (ERK) 1/2, alpha-smooth muscle actin (alpha-SMA) expression, and fibronectin secretion and decreased E-cadherin expression. Antioxidants effectively inhibited TGF-beta1-induced cellular ROS, phosphorylation of Smad 2, p38 MAPK, and ERK, and EMT. H (2) O (2) reproduced all of the effects of TGF-beta1 with the exception of Smad 2 phosphorylation. Chemical inhibition of ERK but not p38 MAPK inhibited TGF-beta1-induced Smad 2 phosphorylation, and both MAPK inhibitors inhibited TGF-beta1- and H (2) O (2)-induced EMT. Diphenyleneiodonium, apocynin, and rotenone also significantly inhibited TGF-beta1-induced ROS. Thus, this data suggest that ROS play an important role in TGF-beta1-induced EMT primarily through activation of MAPK and subsequently through ERK-directed activation of Smad pathway in proximal tubular epithelial cells.
1(0,0,0,1)