Protein Information

ID 3044
Name ubiquinone reductase
Synonyms B13; CI 13KD B; Complex I subunit B13; Complex I 13kD B; NADH Ubiquinone oxidoreductase 1 alpha subcomplex 5; NADH Ubiquinone oxidoreductase subunit B13; NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5; NADH ubiquinone oxidoreductase 13 kDa B subunit…

Compound Information

ID 1341
Name rotenone
CAS

Reference

PubMed Abstract RScore(About this table)
10371157 Galkin AS, Grivennikova VG, Vinogradov AD: --> H+/2e- stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles. FEBS Lett. 1999 May 21;451(2):157-61.
Tightly coupled bovine heart submitochondrial particles treated to activate complex I and to block ubiquinol oxidation were capable of rapid uncoupler-sensitive inside-directed proton translocation when a limited amount of NADH was oxidized by the exogenous ubiquinone homologue Q1. External alkalization, internal acidification and NADH oxidation were followed by the rapidly responding (t1/2 < or = 1 s) spectrophotometric technique. Quantitation of the initial rates of NADH oxidation and external H+ decrease resulted in a stoichiometric ratio of 4 H+ vectorially translocated per 1 NADH oxidized at pH 8.0. ADP-ribose, a competitive inhibitor of the NADH binding site decreased the rates of proton translocation and NADH oxidation without affecting --> H+/2e- stoichiometry. Rotenone, piericidin and thermal deactivation of complex I completely prevented NADH-induced proton translocation in the NADH-endogenous ubiquinone reductase reaction. NADH-exogenous Q1 reductase activity was only partially prevented by rotenone. The residual rotenone- (or piericidin-) insensitive NADH-exogenous Q1 reductase activity was found to be coupled with vectorial uncoupler-sensitive proton translocation showing the same --> H+/2e- stoichiometry of 4. It is concluded that the transfer of two electrons from NADH to the Q1-reactive intermediate located before the rotenone-sensitive step is coupled with translocation of 4 H+.
81(1,1,1,1)