Protein Information

ID 3044
Name ubiquinone reductase
Synonyms B13; CI 13KD B; Complex I subunit B13; Complex I 13kD B; NADH Ubiquinone oxidoreductase 1 alpha subcomplex 5; NADH Ubiquinone oxidoreductase subunit B13; NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5; NADH ubiquinone oxidoreductase 13 kDa B subunit…

Compound Information

ID 1341
Name rotenone
CAS

Reference

PubMed Abstract RScore(About this table)
8443209 Shigemura T, Kang D, Nagata-Kuno K, Takeshige K, Hamasaki N: Characterization of NAD (P) H-dependent ubiquinone reductase activities in rat liver microsomes. Biochim Biophys Acta. 1993 Mar 1;1141(2-3):213-20.
Exogenous ubiquinone-10 was efficiently reduced by rat liver microsomes in the presence of NADH and NADPH under anaerobic conditions. Ubiquinone-10 reduced under anaerobic conditions was rapidly re-oxidized by the re-aeration. The reduction and re-oxidation were not observed when the reactions were carried out with the boiled microsomes or without microsomes, suggesting that the reactions were enzymatically catalyzed by the electron transport system (s) from NAD (P) H to O2 through the ubiquinone. The Km and Vmax of the reductase activity for NADH were 0.4 mM and 1.7 nmol/min per mg of protein, and those for NADPH were 19 microM and 2.1 nmol/min per mg of protein, respectively. The NADH-dependent oxidoreduction system was different from the NADPH-dependent system because of the following observations; (1) rotenone inhibited only the NADH-dependent ubiquinone-10 reductase, (2) dicoumarol inhibited the NADPH-dependent ubiquinone-10 reduction more potently than the NADH-dependent reduction and (3) the activity oxidizing the reduced ubiquinone-10 in the presence of NADH was less than that in the presence of NADPH. Endogenous ubiquinone-9 was also reduced and re-oxidized in essentially the same manner as exogenous ubiquinone-10. Thus, ubiquinone-10 oxidoreductase in rat liver microsomes acts on endogenous ubiquinone-9.
1(0,0,0,1)