Protein Information

ID 82
Name CYP2B
Synonyms CYP2B; CYP2B7; CYP2B7P; CYP2B protein; CYP2B7P1; CYP2B7P1 protein; CYP2B7P1 proteins

Compound Information

ID 1802
Name piperonyl butoxide
CAS 5-[[2-(2-butoxyethoxy)ethoxy]methyl]-6-propyl-1,3-benzodioxole

Reference

PubMed Abstract RScore(About this table)
19851987 Park D, Kim S, Kang H, Oh J, Jang JY, Shin S, Kim TK, Choi YJ, Lee SH, Kim KY, Joo SS, Kim YB: Preventive effect of piperonyl butoxide on cyclophosphamide-induced teratogenesis in rats. Birth Defects Res B Dev Reprod Toxicol. 2009 Oct;86(5):402-8.
BACKGROUND: Cyclophosphamide induces fetal defects through metabolic activation by cytochrome P-450 monooxygenases (CYP). The effects of piperonyl butoxide (PBO), a CYP inhibitor, on the fetal development and external, visceral, and skeletal abnormalities induced by cyclophosphamide were investigated in rats. METHODS: Pregnant rats were daily administered PBO (400 mg/kg) by gavage for 7 days (the 6th to 12th day of gestation), and intraperitoneally administered with cyclophosphamide (12 mg/kg) 4 h after the final treatment. On the 20th day of gestation, maternal and fetal abnormalities were determined by Cesarean section. RESULTS: Cyclophosphamide reduced fetal body weights by 30-40% without increasing resorption or death. In addition, it induced malformations in live fetuses: 100, 98, and 98.2% of the external (head and limb defects), visceral (cerebroventricular dilatation, cleft palate, and renal pelvic/ureteric dilatation), and skeletal (acrania, vertebral/costal malformations, and delayed ossification) abnormalities, respectively. The pre-treatment of PBO greatly decreased mRNA expression and activity of hepatic CYP2B, which metabolizes cyclophosphamide into teratogenic acrolein and cytotoxic phosphoramide mustard. Moreover, PBO remarkably attenuated cyclophosphamide-induced body weight loss and abnormalities of fetuses; score 3.57 versus 1.87 for exencephaly, 75.5% versus 42.5% for limb defects, 65.3% versus 22% for cerebroventricular dilatation, 59.2% versus 5.1% for cleft palate, score 1.28 versus 0.93 for renal pelvic/ureteric dilatation, 71.9-82.5% versus 23-45.9% for vertebral/costal malformations, and 84.2% versus 57.4% for delayed ossification in cyclophosphamide alone and PBO co-administration groups. CONCLUSIONS: These results suggest that repeated treatment with PBO may improve cyclophosphamide-induced body weight loss and malformations of fetuses by down-regulating CYP2B.
2(0,0,0,2)